

Multi-hazard event set generation using deep learning and statistics of extremes

Alison Peard

OPSIS Weekly Meeting | 5th March 2025

Agenda

- Refine narrative
- Ground in OPSIS context
- Discuss ideas for applications with OPSIS team (4)
- Get feedback on:
 - Figures & results
 - o General
 - Anything good
 - Anything unclear
 - Too simple / too complex

+ Vulnerability Curves

What can you say?

Risk to a single asset 🚺

What can you not say?

- Risk across a region/sector/network. X
- Risk from multiple hazards co-occurring. X

Why?

- Hazard maps ≠ realistic hazard events

Introduction Return Level Maps are not Events

1-in-50 year return period map shows

- 50-year wind speed for each point V
- 50-year wind storm 🗙

1. ArcGIS | What does expected annual damage mean

2. Lamb, Tawn, & Keef (2010) A new method to assess the risk of local and widespread flooding on rivers and coasts

Compound hazards

Two or more hazards may impact the same region and/or time period with impacts different (greater, lesser) than their sum.

- Types
- Times
- Locations

Interaction of hazards

- None → "Multi-layer single hazards"
- Hazard level → Multi-hazard
- Vulnerability level → Multi-risk

1. MYRIAD-EY D1.2 Handbook of Multi-hazard, Multi-Risk Definitions and Concepts

Taillie (2021) Widespread mangrove damage resulting from the 2017 Atlantic mega hurricane seasor

Introduction Spatially-Resolved Event Sets (Cat Models)

Features

Portfolio of 1000s of events

Modelling is expensive

Numerical, stochastic, or hybrid simulations

Calculate statistics over losses from entire portfolio

Multivariate or region events

Tropical cyclones

- Bloemendaal et al. (2020) | STORM

Floods

- JBA | Global Flood Event set
- Fathom | Global Flood Cat

Introduction STORM

STORM

- **Based on IBTrACS**
- Statistical-empirical method
- Key variables

Genesis

points

stochastic

- Wind speed Vt 0
- Pressure **P** 0
- Maximum Potential Intensity MPI 0
- Sea surface temperature SST 0

Bloemendaal et al. (2020) Generation of a global synthetic tropical cyclone hazard dataset using STORM

Introduction STORM

STORM

- Based on IBTrACS
- Statistical-empirical method
- Key variables
 - \circ ~ Wind speed Vt
 - Pressure P
 - Maximum Potential Intensity MPI
 - Sea surface temperature **SST**

$$V_t = a(P_{env} - P_t)^b$$

 $P_{env} - P = A + Be^{C(SST - T_0)}, T_0 = 30.0 \ ^{\circ}C$

 $\Delta P_t = c_0 + c_1 \Delta P_{t-1} + c_2 e^{-c_3 X}, \quad c_2 > 0, \ X = \max\{0, \ P_t - MPI\}$

Introduction STORM

STORM

ΔPressure

- Based on IBTrACS
- Autoregressive
- Key variables
 - Wind speed Vt
 - Pressure P
 - Maximum Potential Intensity MPI
 - Sea surface temperature **SST**

1. Bloemendaal et al. (2020) Generation of a global synthetic tropical cyclone hazard dataset using STORM

Autoregression with constraint f(MPI)

- Identify independent hazard events
- Extract footprints
- Estimate
 - Marginal distributions
 - Dependence structure (fields and space)
- Generate new samples

• Identify independent hazard events

- Extract footprints
- Estimate
 - Marginal distributions
 - Dependence structure (fields and space)
- Generate new samples

- Identify independent hazard events
- Extract footprints
- Estimate
 - Marginal distributions
 - Dependence structure
- Generate new samples

2004 2005 2005 • Identify independent hazard events

0.95 0.90 0.85 0.80 0.80 0.85

0.65

- Extract footprints
- Estimate
 - Marginal distributions
 - Dependence structure
- Generate new samples

- Identify independent hazard events
- Extract footprints
- Estimate
 - Marginal distributions
 - Dependence structure
- Generate new samples

Method Identify independent hazard events

 $f(x_t)$

- Maximum
- Minimum
- Cumulative sum
- Standard deviation

Hazard footprints

Method Estimate Marginal Distributions

Marginal Distribution of a single random variable

Estimate marginal distribution of every gridcell

Standard methods can underestimate extremes e.g., Gaussian distribution, autoregression ⇒ Statistics of extremes

Asymptotically–justified Supported by mathematical theory

- Block maxima
- Peak-over-threshold (POT)

Empirically-justified

Supported by strong empirical evidence

- Wind speeds
 - "The overwhelming weight of evidence suggests that the parent distribution of wind speeds is of the Weibull type"¹

Method Estimate Marginal Distributions

Marginal Distribution of a single random variable

Estimate marginal distribution of every gridcell

Standard methods can underestimate extremes e.g., Gaussian distribution, autoregression ⇒ Statistics of extremes

Asymptotically-justified

Supported by mathematical theory

- Block maxima → Generalized Extreme Value (GEV)
- Peak-over-threshold (POT) → Generalized Pareto (GPD)

Empirically-justified

Supported by strong empirical evidence

- Wind speeds
 - "The overwhelming weight of evidence suggests that the parent distribution of wind speeds is of the Weibull type"¹

Wind ~ Weibull(σ,μ;k) Precipitation ~ GPD(μ,σ,ξ) Sea level pressure ~ GPD(μ,σ,ξ)

→ Estimate parameters

Method Estimate Marginal Distributions

Wind ~ Weibull(σ , ξ ;k) Precipitation ~ GPD(μ , σ , ξ) Sea level pressure ~ GPD(μ , σ , ξ)

Classical

- High dimensionality
 - T x H x W x N variables
- Assumptions/tail flexibility
- Extremes
- E.g., Multivariate Gaussian, copulas

Solution

- Deep learning
 - "Implicitly" learns the distribution

Generative Adversarial Networks (GANs)

- Data: ≥10,000 training samples
 ⇒ Need large dataset
- 2. Focus on mode
 - ⇒ Rarest samples ignored
- 3. Equally sensitive across all ranges
 - ⇒ Training data distribution matters

StyleGAN with Differentiable Augmentation

- 1. Good results with ~100 images
- 2. Only train on top 150 storms
- 3. Use with Gumbel PIT

https://github.com/mit-han-lab/data-efficient-gans/tree/master

Application of Method ERA5 Reanalysis Data

Variable	Unit	Dataset	Temporal Range	Spatial Range	Aggregate	Extreme	In-Resolution	Out-Resolution
10m wind speed	mps	ERA5	1941-2022	10-25°N, 80-95°E	Maxima	Maxima	0.25° / ~26km	0.23° / ~24 km
Total precipitation	m	ERA5	1941-2022	10-25°N, 80-95°E	Sum	Maxima	0.25° / ~26km	0.23° / ~24 km
Sea level pressure	Pa	ERA5	1941-2022	10-25°N, 80-95°E	Minima	Minima	0.25° / ~26km	0.23° / ~24 km

Application of Method Marginal distributions

Application of Method Transforming fields

Application of Method StyleGAN Training

Gumbel samples

pressure

→ StyleGAN

Application of Method StyleGAN Training

Application of Method Results (wind)

Generated

5000 samples

Training

Generated

Application of Method Results (precipitation)

Application of Method Results (sea level pressure)

Training

Application of Method Results

Application of Method Evaluation

Application of Method Evaluation

Application of Method Evaluation

Saffir-Simpson Scale

Discussion Comparison to STORM

CATEGORY	КМРН	MPS	DAMAGES
1	119-153	33-43	Very dangerous winds will produce some damage
2	154-177	43-49	Extremely dangerous winds will cause extensive damage
3	178-208	49-58	Devastating damage will occur
4	209-251	58 - 70	Catastrophic damage will occur
5	≥ 252	70	Catastrophic damage will occur

Mangrove risk Mangrove damages (old results)

Damage = ≥20% loss of NDVI

Mangrove risk Mangrove damages (old results)

Discussion Comparison to STORM

1. Meiler (2022) Supplementary Information for article"Intercomparison of regional loss estimates from global synthetic tropical cyclone models"

Discussion Comparison to STORM

CATEGORY	КМРН	MPS	DAMAGES
1	119-153	33-43	Very dangerous winds will produce some damage
2	154-177	43-49	Extremely dangerous winds will cause extensive damage
3	178-208	49-58	Devastating damage will occur
4	209-251	58 - 70	Catastrophic damage will occur
5	≥ 252	70	Catastrophic damage will occur

	HazGAN	STORM
Accuracy	Better matches training data 🗹	Overestimates extremes
Training data	ERA5 underestimates extremes	IBTrACS 🗹
Extremes	Characterised 🗸	Not characterised
Coverage	Training area	Global 🔽
Variables	Any 🗹	Wind and pressure
Future projections	No	No
Intepretability	Limited	Straightforward 🗹

Case study 1: Damage to electricity networks in the UK

Create enough ensemble members to inform cost-benefit analysis of 30 years of losses with/without adapting UK electricity network.

Focus on low-impact storms which are not covered by insurance.

Variables:

- 1. Wind speed | ERA5
- 2. Wind direction | ERA5
- Antecedent 30 day precipitation | HadUK

Key metric: Number of faults

Case study 2: Wind and solar drought in the UK

Model the probability of nationwide solar and wind droughts and its effect on the UK grid

Expertise needed

Variables:

- 1. Wind speed | ERA5
- 2. Cloud cover | ERA5
- 3. Solar radiation | ERA5

₽ UNIVERSITY OF OXFORD

Thanks for listening!